Attività guidate

🖌 Attività 1 🛛 Foglio elettronico

Il metodo di bisezione

Costruiamo un foglio Excel per determinare la soluzione dell'equazione $2^x + x = 0$ con la precisione desiderata, mediante il metodo di bisezione.

A. ANALISI PRELIMINARE DELL'EQUAZIONE

Abbiamo già visto, in uno degli esempi relativi al Paragrafo 3 dell'Unità 4, che l'equazione $2^x + x = 0$ ha una sola soluzione appartenente all'intervallo (-1, 0). Infatti, l'equazione equivale a $2^x = -x$, quindi le sue eventuali soluzioni sono le ascisse dei punti di intersezione tra i grafici delle due funzioni $y = 2^x$ e y = -x. Dalla figura a lato si vede che i due grafici hanno in comune un solo punto, la cui ascissa x_0 è compresa tra -1 e 0.

B. COSTRUZIONE DEL FOGLIO EXCEL

Imposta un foglio Excel come nella figura a pagina seguente; in particolare devi:

- 1. porre nelle celle A3 e B3 i due estremi *a* e *b* dell'intervallo dove si trova la radice di cui vuoi determinare un'approssimazione;
- 2. porre nella cella C3 la formula per il calcolo del punto medio di [*a*, *b*];
- 3. porre nella cella D3 la formula per il calcolo del valore della funzione in *a*; nel nostro caso la formula sarà:

=2^ (A3) +A3

- 4. copiare la formula in D3 nelle celle E3 ed F3;
- 5. inserire nella cella A4 la formula:

=SE(D3*F3<0;A3;C3)

- 6. inserire nella cella B4 la formula opportuna, analoga a quella nella cella A4.
- 7. copiare le celle dell'intervallo C3:F3 nella riga 4 sottostante;
- 8. copiare le celle dell'intervallo A4:F4 nelle righe sottostanti fino alla riga 10, per un numero di righe sufficiente a garantire la precisione voluta.

	А	В	С	D	E	F
1	Algoritmo di bisezione					
2	а	b	c=(a+b)/2	f(a)	f(b)	f(c)
3	-1	0	-0,5	-0,5	1	0,207106781
4	-1	-0,5	-0,75	-0,5	0,207106781	-0,155396442
5	-0,75	-0,5	-0,625	-0,155396442	0,207106781	0,023419777
6	-0,75	-0,625	-0,6875	-0,155396442	0,023419777	-0,066571094
7	-0,6875	-0,625	-0,65625	-0,066571094	0,023419777	-0,021724521
8	-0,65625	-0,625	-0,640625	-0,021724521	0,023419777	0,000810008
9	-0,65625	-0,640625	-0,6484375	-0,021724521	0,000810008	-0,010466611
10	-0,6484375	-0,640625	-0,64453125	-0,010466611	0,000810008	-0,004830646

Risorse digitali

Se hai difficoltà a svolgere le attività guidate, fai riferimento ai file di Excel disponibili.

C. UTILIZZO DEL FOGLIO

1. In base ai dati che puoi leggere sulla riga 10 del foglio puoi dedurre che la radice x_0 cercata appartiene all'intervallo

 $-0,6484375 < x_0 < -0,640625$

È possibile quindi stabilire le prime due cifre decimali di x_0 : $x_0 = -0,64....$

Spiega perché non è possibile invece determinare la terza cifra decimale di x_0 .

- 2. Copia la riga 10 nelle righe sottostanti un numero di volte sufficiente a determinare anche la terza cifra decimale di x_0 .
- 3. Copia la riga 10 nelle righe sottostanti un numero di volte sufficiente a determinare le cifre decimali di x_0 fino alla quinta.

Attività proposte

Considera l'equazione $x^3 - x + 2 = 0$.

- a. Verifica graficamente che ammette una sola radice e determina un intervallo cui tale soluzione appartiene.
- b. Modifica il foglio Excel costruito nell'attività guidata precedente, in modo da potere approssimare tramite di esso la radice individuata al punto a.
- c. Utilizza il foglio Excel per determinare la radice fino alla terza cifra decimale.