Problemi di ottimizzazione

Esercizio 1

Data la parabola di equazione $y = \frac{1}{2}x^2$, determina il suo punto P più vicino al punto A(4,1).

- 1. In GeoGebra inserisci nella barra di inserimento l'equazione della parabola $\ll y=1/2x^2$ ».
- 2. Disegna il punto |A| A(4,1).
- 3. Considera sul grafico un punto $\bigcap P$ e per il momento posizionalo nell'origine; disegna il segmento $\nearrow AP$ e indicalo con a.
- 4. Visualizza il foglio di calcolo, seleziona il punto *P* con il tasto destro e clicca sulla voce «Registra sul foglio di calcolo»: in tal modo la colonna A e la colonna B del foglio di calcolo sono pronte per «ospitare» le coordinate del punto P che farai variare sulla parabola.
- 5. Seleziona con il tasto destro il segmento AP e clicca sulla voce «Registra sul foglio di calcolo»: così la colonna C «ospiterà» la lunghezza di tale segmento.
- 6. Trascina il punto P sulla parabola, una volta sola da sinistra a destra, fino ad ascisse pari circa a 4: si crea automaticamente una tabella nel foglio di calcolo.
- 7. Seleziona, da tale tabella, tutti i dati che stanno nella colonna A e nella co-
- 8. Lasciando attivata la selezione precedente crea una lista di punti .: il programma disegna il grafico della funzione che rappresenta la lunghezza del segmento AP al variare dell'ascissa di P.

Che cosa puoi osservare riguardo alla distanza minima?

	U	,		

Ora puoi risolvere il problema analiticamente e verificare la validità della tua ipotesi.

▲ Esercizio 2

Determina il rettangolo di area massima inscritto in una semicirconferenza di ragqio r.

- 1. In GeoGebra, disegna una semicirconferenza di raggio 3, per esempio, e indica con C il suo \mathbb{C} centro.
- 2. Considera un punto sul diametro e denominalo A, posizionandolo inizialmente vicino al centro.
- 3. Considera il punto simmetrico \cdot di A rispetto a C e denominalo B.
- 4. Traccia il segmento $\nearrow AC$ e indica con k la sua misura.
- 5. Traccia le perpendicolari \searrow al diametro passanti per A e B e individua le loro intersezioni \triangleright con la semicirconferenza, rispettivamente E e D.
- 6. Disegna il rettangolo *ABDE* e chiamalo *m*.
- 7. Visualizza il foglio di calcolo; clicca con il tasto destro su k e seleziona la voce «Registra sul foglio di calcolo»; ripeti l'operazione cliccando su «m»: in tal modo la colonna A e la colonna B del foglio di calcolo sono pronte per «ospitare» la lunghezza di AC e l'area del rettangolo.

- 8. Trascina il punto A fino all'estremo del diametro più vicino, così da riempire di dati la tabella.
- 9. Seleziona tutti i dati scritti nelle colonne A e B.
- 10. Con la selezione attiva, crea una lista di punti [60]: il programma disegna il grafico della funzione che rappresenta l'area del rettangolo al variare del segmento AC

segmento Ac.
Che cosa puoi osservare riguardo all'area massima?

Ora puoi risolvere il problema analiticamente e verificare la validità della tua ipotesi.