Matematica in laboratorio

Attività guidate

Attività 1 Foglio elettronico

L'approssimazione di un integrale definito con il metodo dei rettangoli

Esistono alcune funzioni la cui primitiva non è calcolabile con i metodi che abbiamo visto nel volume. Per calcolare l'integrale definito di una funzione di questo tipo, per esempio per calcolare:

$$\int_0^1 e^{-x^2} dx$$

non è possibile perciò avvalersi del teorema fondamentale del calcolo integrale; si ricorre allora a dei metodi approssimati. Uno dei metodi più semplici è il cosiddetto metodo dei rettangoli. Lo illustriamo e ti guidiamo a costruire un foglio Excel che applica tale metodo.

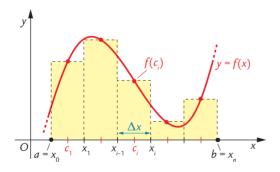
A. IL METODO DEI RETTANGOLI

Supponiamo che f sia una funzione continua e positiva nell'intervallo [a, b] e proponiamoci di determinare un'approssimazione dell'integrale $\int_{0}^{\infty} f(x) dx$.

Suddividiamo l'intervallo [a, b] in n intervallini di ampiezza $\Delta x = \frac{b-a}{n}$. Gli estremi degli intervallini sono:

$$x_0 = a$$
, $x_1 = a + \Delta x$, $x_2 = a + 2\Delta x$, ..., $x_n = b$

Detto c_i il punto medio dell'intervallino $[x_{i-1}, x_i]$, il modo più elementare di approssimare l'integrale definito della funzione f nell'intervallo [a, b] è quello di approssimare l'area del trapezoide che esso rappresenta con la somma delle aree dei rettangoli di base Δx e altezze $f(c_i)$.



Si giunge così alla formula seguente, valida anche per funzioni di segno qualunque.

IL METODO DEI RETTANGOLI

Sia f una funzione continua in [a, b]. Vale la seguente formula di approssimazio-

$$\int_{a}^{b} f(x) dx \simeq \Delta x [f(c_1) + f(c_2) + \dots + f(c_n)]$$
 [1]

$$\Delta x = \frac{b-a}{n}$$
, $c_i = \frac{1}{2}(x_{i-1} + x_i) = \text{punto medio di } [x_{i-1}, x_i] \text{ e } x_i = a+i\Delta x.$

Risorse digitali

Se hai difficoltà a svolgere le attività quidate, fai riferimento ai file di Excel disponibili.

B. UN ESEMPIO DI APPROSSIMAZIONE DI UN INTEGRALE CON IL METODO **DEI RETTANGOLI**

Approssimiamo $\int_{0}^{3} e^{-x^2} dx$ con il metodo dei rettangoli, applicato con n = 4.

1. Dividiamo l'intervallo [1, 3] in 4 intervallini di ampiezza $\Delta x = \frac{3-1}{4} = 0.5$.

Gli estremi degli intervallini e i loro punti medi sono rappresentati nella figura qui sotto.

2. Utilizzando i punti medi (colorati in rosso) otteniamo:

$$\int_{1}^{3} e^{-x^{2}} dx \simeq \underbrace{0.5 \cdot [f(1.25) + f(1.75) + f(2.25) + f(2.75)]}_{\Delta x} = 0.5 \cdot [e^{-(1.25)^{2}} + e^{-(1.75)^{2}} + e^{-(2.25)^{2}} + e^{-(2.75)^{2}}] \simeq 0.13$$

C. COSTRUZIONE DEL FOGLIO EXCEL

Costruisci ora un foglio Excel, impostato come quello che puoi vedere qui sotto, che applica il metodo dei rettangoli per approssimare un integrale del tipo $\int_{0}^{p} e^{-x^{2}} dx$. Osserva che:

- le celle B2 e B3 sono preposte all'immissione degli estremi a e b dell'intervallo di integrazione;
- la cella D2 è preposta all'immissione del numero di suddivisioni n dell'intervallo che si vuole considerare;
- la zona A6:E9 serve a effettuare i calcoli preliminari necessari per applicare la for-
- nella cella E14 è fornita l'approssimazione dell'integrale.

Il foglio costruito riguarda il caso in cui si è scelto n = 4.

	А	В	С	D	Е
1	Metodo dei rettangoli				
2	a = 1 suddivisioni n = 4				
3	b =	3			
4					
5	i	\mathbf{x}_{i-1}	$\mathbf{x_i}$	c _i	f(c _i)
6	1	1	1,5	1,25	0,209611
7	2	1,5	2	1,75	0,046771
8	3	2	2,5	2,25	0,006330
9	4	2,5	3	2,75	0,000520
10					
11					
12					
13					
14	Valore approssimato dell'integrale=				0,13161565

Per costruire tale foglio devi in particolare:

1. immettere nella cella A6 il valore 1;

- 2. immettere nella cella B6 la formula Excel che traduce la formula $x_{i-1} = a + (i-1) \Delta x$, essendo $\Delta x = \frac{b-a}{n}$
- 3. immettere nella cella C6 la formula Excel che traduce l'analoga formula $x_i = a + i \Delta x$;
- 4. immettere nella cella D6 la formula che calcola il punto medio dell'intervallo $[x_{i-1}, x_i];$
- 5. immettere nella cella E6 la formula che calcola il valore della funzione $f(x) = e^{-x^2}$ in c_i , nel nostro caso:

- 6. immettere nella cella A7 la formula = A6+1;
- 7. copiare sulla riga 7 le celle della zona B6:E6;
- 8. copiare la riga 7 nelle due righe sottostanti (in modo da giungere fino al valore i = 4, in accordo con la scelta di 4 suddivisioni);
- 9. immettere nella cella E14 la formula che traduce la formula [1].

Ritroverai così il valore approssimato dell'integrale, già ricavato nello svolgimento dell'esercizio senza il foglio Excel.

D. UTILIZZO DEL FOGLIO

Modifica il foglio in modo da ottenere un'approssimazione dell'integrale $\int_0^6 e^{-x^2} dx$ con il metodo dei rettangoli applicato con una suddivisione dell'intervallo [2, 6] in 10 parti.

Attività proposte

Considera l'integrale $\int_{1}^{2} \left(\frac{x^2 + 1}{x} \right) dx$.

- a. Calcola il valore esatto dell'integrale e arrotondalo alla seconda cifra decimale.
- b. Modifica il foglio costruito nell'attività guidata, in modo da calcolare un'approssimazione dell'integrale $\int_{1}^{2} \left(\frac{x^2+1}{x}\right) dx$ con il metodo dei rettangoli applicato con una suddivisione dell'intervallo [1, 2] in 10 parti.
- c. Confronta i due risultati trovati e verifica la correttezza del risultato trovato in a.